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A RUBUST CONTROL SYSTEM DESIGN ¥
Juargea E. Ackermunn
Coordinated Scieace Laboratory
University of Illinois, Urbana, Illinois 61801, uUsSA

Abstract

A representation of controllable linear svstems is introduced, which permits assigning poles or charac-
teristic parameters €d a state feedback system by a matrix multiplication. This is used as a link between
state space and classical parameter plane methods. The system representation maps a point in a nfp dimen=-
sional parameter space ¥ of characteristic parameters into the nxp dimensional parameter space X of state
feedback gains, where p is the number of actuators. For p=l the coordinates of the & space are the coef-
ficients of the closed loop characteristic polynomial, for p>1 they are coefficients in a characteristic
polynomial matrix and its determinant is the characteristic polynomial. By this computationally simple
mapping procedure it becomes feasible to map aot only a fixed set of eigenvalues but also regions in the s
or z plane, in which the eigenvalues shall be located. This relaxation of the dynamic specifications
permits satisfying other typical design specifications like robustness with respect to sensor and actuator
failures, large parameter variations, finite wordlength implementation, and actuator constraints. ALl
tradeoffs between such requirements can be made in the X space. Three examples illustrate the variety of
problems which can be tackled with this new tool.

L. INTRODUCTION 2. The price of an actuator is assumed to increase
B o with
Control system specifications ire usually not given o, = maxlu,(c)l and/or 2)
in terms of a quadratic cost function or 1 set of £ e
eigenvalues. These are mainly used as free para- Uy ¥ maxlui(t)l 3)
meters in trial and error design procedures aimed wnere the worst initial state within given limi-
at good tradeoifs between the dynamics of the tations is considered. El and/or u{ should be
svstem and other design aspects, f[or example 2 kept "smali."
actuator limitations and robustness with respect
td sensor or actuator failures or other large 3. A stace feedback structure
parameter variactions. Three questions in this u= -K'x %)
L is assumed. The details and examples are worked
1. Quadruplex techniques (for example in aircraft out for single input plants with
controi systems) are an expensive solution to 4 .
the reliabilicy problem. Is it not sufficient u® k' ® -tk ky .o kD G)
to guarantee that all unstable and insuffi- For multi-input plants the basic result is
ciently damped modes rerain observable and stated in the Appeadix. The nxp elements of X' |
controllable under ail coqgldercd combinations are the free parameters of the proposed method. f
of seasor and actuator fallures? They ara coordinates of a paramecer space
o FhteR & P SeBEd ; called "state feedback gain space™ or "X-space.
= :::;hz:azii: i:::f::i:neazoziza:;:ciélc:;:cem 4. It is assumed that senscr and actuator failures
by identificaticn, failure detection etc.? occur in‘the form that the output of a failed
which range of such changes can be covered element is not correlated to its ianut. Then
satisfactorily by fixed gain feedback or a few the output is an external disturbance. Rejec-
sets of sains and a simple switching criterion. tion of external disturbances is nct considered

{n this paper. For the closed loop system '
J. Is a :iven set of mived specifications, e.3. .

on bandwidth and damping, actuater constraints, X = (A-BK')x (6)
robustness requirements, etc., ccmpatible
«withia an assumed control system structure, ot
which of the specifications are conflicting,
how far do we nave to relax them?

in sensor coordinates a failure of the ith
sensor (actuator) is equivalent to a structural
change by which the itn columa (row) of &'
becomes zero. Also iu the case that a state

This paper does aot sive a compicote answer to these varxablezxslnoc ;- oo A oo i
questtons, however 1 method is proposed aad sowme column of §' s zero. It is part of the design
tyols are provided to attack such questions urder to decide,which state varlables are measured
the following assumptions: and for which of them redundancy must be pro-

vided for high system reliabilicy. 1t is a

1. Only linear plancs goal to avoid {ailure detection and multiplexed

i®=Az-=3Bu i"-“v'--"nl L 1'(“1--'“.,:' 1) components whenever possible. ‘
| or x(k+l) = A = (k) *}'l\k) are considered. It 5. Tt is assumed that the nominal dynanic benavior
1 Ls assumed that eq. (1) &s written in "sensor of the control system can be spacificd by a
coordinates,” i.e. all measursd variables are region in the cigenvalue plane - ».5. for a con-
! state variables xj. Severa! zairs (Ag,3;), tinuous time system {n the 3 pn?ne the region
(A7,34), etc. may be given, 2.3. for different to the left of the boundary marked with 3=l ia
operating points of an underlyineg nonlincar Eig. 1 -whera all eigenvalues must be 1°C‘$°d
; system. It is assumed that 11l pairs (Ag,8;) for the nomlnel structure and patangcer values, i
are concrollable and have the same control- For failure situaticns a relazed "emergency
lability indices. specification," 2.g. the boundary 2=0.5 or the

This research was surported by the Deutsche Forscaungs-und Versuchsanstalt flr Luft-und Raumfahrt and by
. the U. §. Alr Force under Crant AFOSR 78-363), Appr = : .
submitted through IZEE for the 1979 JACC @istribulica . ‘
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Fig. l. A family of hyperboiic boundacries in s
plane.

stability limit =0 in Fig. 1 may be given.
A specification is robust under a failure if
no eigenvalue crosses the corresponding
boundary due to the failure.

The proposed method is: Design in ¥-space. A
region X| in the X-space is determined, such that
all eigenvalues meot the specifications iff g'ER&.
This may be the intersection of several such
regions for differesat parameter values. Subsets
of X| with certain robustness properties can be
found and tradeoffs with actuator constraints,
bandwidth requirements, etc. can be made in the ¥-
space. The method also shows, whether a svlution
exists under the given assumptions and if not,
which alternatives exist for relaxation of speci-
fications such that a solution will exisc.

Parameter space methods have a long tradition,
mainly in Russia and Yugoslavia. Siljak (1] gives
a historical review of the work by Vishnegradsky,
YNeimark, Mitrovic, and others. Siljak generalized
these parameter mapping methods significancly. A
typical procedure Ior a continuous time system is
to assume a controller structure with two free
parameters ¥ and 3. Determine the closed-loop
characteristic polynomial
a "
2(s) = TPy lands” 0. M

Substitute s =<+ju and separite eq. (7) into its
real and imaginary parts: Re(T,n,¥,3)=0,
im(=,r,%,3)=0. Assume these noniinear cquations
have a solution

= a(C,w), $ & 3@ u). (8)
E£quation (8) allows to map ~,u pairs oa the
boundary into the -3-vlane. The image boundaries
divide the ¥-3-plare into rezginns characterized by
the number of 2igenvalues inside and outside the
s-plane region.

In the present paper the control system structure
is restricted to state {cedback. This permits
simplifying the determination of eq. (8) by pole
placement methods. Consider for example a second
order single-input systam with k%7, %, =3 in aq.
(5). Ia classical parameter olane methods P(s) =
det(sl-A+b k'Y=™ (2,3)49,(5,2)s+5°=0 is determined
and wich s==+j1 solved for 7 and 3. In the method
proposed in this paper the pj are expressed in

terms of - and w by
2 9 9
P(s) = (s=7+jw) (s=o=ju) = s"=27s4c 4"
2

=p°(7.»u)+p1(7)s+s =0, 9)
Then by pole placement

€ = (g .py) = a(@,w) e

Ky = 3(p,.py) * 3(7,0). s
Thus the mapping equation (8) is obtained in a
different way. More generally for an nth order
single input system in both approaches an n dimen~
sional parameter space ¢ with coordinates Py is
introduced as an intermediate step between the set
of eigenvalues A={)\, «-.1q} and the X-space. The

relation between A and X can be expressed in both
directions:

a) FromX to @ by the characteristic equation
PQ\)=det (A I-A+bk'), from @ to A by numerical
factorization of PQ ).

b) From A to @ by multiplication of elementary
factors P(“)=(\-\l)(\-,\.2)... A-\,), from & to
X by pole placement.

In the next section pole placement is formulated

in a form which makes direction b) far more attrac-
tive than direction a). In Section 3 the use of
such boundaries for the desizn of robust control
systems in X -space is discussed. Section 4 shows
the application to three examples.

2. BOUNDARY MAPPING

Pole-placement for single-input svstems. The pole
placement theorem is used in the form originally
published in German in (2], available in English ina
[3]: Given an ath order monic polynomial P(\), an
nxn matrix A and an nrl vector b such that detR#0,
R=[(b,Ab ... A" lb], the equation 20 )=

dec (A I-A+b k') has a unique solution and this solu-
tion is

k' = e'P@) (11)
where e' is the last row of gL
With PO) = Q=4 )0-,) «oe 022 ) (12)
sp, P\ e +p DL 0 13)
eq. (11) may be written as
K =e' (D@ ,D ... @ D) (1)
=e'(Pol¥pia+t--- +Pn_1s\_n-l*§“)- as)

For mapping from £ space to ¥ space it is more con-
venient tao rewrite eq. (13) as

&'=2'E

re' 1 (16)
e

' =lp, PyeePqy U E=|:
e'éﬁ

1>

E is an (n+l)¥n matrix. If the inverse of eq. (16)
is needed, it is convenient to express the last
row of £ Dy the Cayley-tamilton theorem in terms

3£ the previous rows. This however requires the
evaluation of the characteristic polynomial

det (LI-A) =a 4, + o0 2 VOTIRA, The faver-
tible form of eq. (16) is

b ole,e, pyoey oo B

n-

an

The columns of J can be evaluated recursively by

]
N

Leverrier's algorithm, which also gives the a; [2].
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The form (16) is most convenicnt for trial and
error design procedures, jgraphical displays of
cross-sections of the * space, etc. The plant
description in the form of the matrix E is evalu-
ated only once for a given pair (A,b). The map-
ping of a ;rial design point in ~  space then
requires n- multiplications and n* additions. This
compares favorably with mapping a trial design
point from the parameter space of guadratic
criteria via the Riccatl equation into Y space.
The generalization of eq. (16) to multiinput
systems is given in the Appendix.

Sensitivities., The influence of a coefficient p;
of the characteristic polynomial on k', given the
aother pj, follows from eq. (16) as

L

dk i
T Aeesnr. (18)

The influence of an eigenvalue 1; on k', given the
other \;, follows from eq. (l4) as

dk' ' . ;
d_\_;--% (A \ll) e (A i-lp (A \i+1£)“'(5 A\n‘I_)(w)
For complex conjugate eigenvalues quadratic factors
in P(s)_are more convenient. Let P(\) =
(a+\#.2)Q(\), then

L' =o' @L+ba+20)-q(a) 20)
dk' & dic' ¢
da me'@),  FpTe'AQ@). (21)

Recions in ' olane. Boundaries, symmetric with
respect to the real axis, in the ' plane will be
specified, which describe the desired eigenvalue
locations. Two cases will be discussed: A real
root crossing a boundary or a complex conjugate
pair crossing a boundary. The third possible case
of roots leaving the region through iafinity can
be avoided by closing the contour by an arc of a
circle with large radius. Typically the region is
a connected set and the boundary has two inter-
sections with the real axis. 1In this case there
are two real root boundaries and one complex root
boundary in ¥ space. However other boundaries are
possible, e.g. separaté boundaries for slow and
fast modes, etc. For eacnh intersection of a
boundary in the % plane with the real axis at ‘=7,
a real root boundary in X space is obtained €rom

20.)= W=RE), RE) = +ri+.eotr A" 2L

o 1 n-2 22)
By eqs. (16) and (22) s
ki. .ki(Po ity pn-l) =ki(7,ro . rn_z) i=],2..0 (23)

where the ky depend linearly on =. Thus 7 can be
elimirated by one of the ki's to give the linear
boundary

Sl 7 i <t 9
Kj Kj\kl’ro ...rn_L) J=L52509 0 sfly  FLs (24)

This is a straigiht line in the kj-k; plane.
Another part of the boundary is obtiined if a
complex pair 5f eigenvalues crosses the boundary
at %\ *>+ju. Then
A 5 A
Py = (0 ek es Su 0
- -2
Q0) =g, va + b " 72
and the type of boundary in ¥ space depends on the
form of the boundary v =1 (7) in the % ?lane. For
> =const., L.2. a parallel to the imaginary axis,
the ki are linear in w“. Thus for given gq; the
image in the ¥ space is a straight line.

(25)

Most commonly used boundaries are conic sections
symmetric to the real axis, i.e.

N n
T c’+c AR o (26)
Speclal cases are =

c,<0 ellipse, of particular intecest are circles
e c,==1, e.g. constant natural frequency curves

in s plane, stability limit and other
boundaries in z plane.

¢,=0 parabola, or if also ¢,=0, co>0 straight line
parallel to the real axis.

¢, >0 hyperbola, gn particular 2 straight lines for

i L==¢y (3-7,)°, ¢,>0, e.g. constant damping
lines in s-plane.

Figure 1 shows the family of hyperbolas

e @n
For c—0 this goes to the imaginary axis, for o=l
the asymptotes are the 1/v2 damping lines. For a
different scaling - may be replaced by =/d.
Substituting eq. (26) into (25)

PQ) = [)‘2‘20\*-(141:2)02 +eo +c°] QQ\). (28)

This shows that the 123 and kj depend linearly on ¢
for c¢,=-1, i.e. for circular boundaries. Thus also
in this case the boundaries in X space are straight
lines if the eigenvalues in Q(\) are fixed and a
complex pair of poles meves along the circle.
For c,# -1 the functioans

P PECHE R Y (29)

are quadratic in - and by eq. (16) the same is
true for
kK, = k;@,q, -0 qq)- (30)

One of these equations can be solved for ===(k.),
where only real roots -=v+} are of interest. If
only the left half \ plane branch of the conic
section is needed, then 7=y-f is selected and sub-
stituted into the other k; equations to give

kj -kj(‘ki,q° i qn_J), i#j. 31)
Note that this is not the curve in the k.-k, =
cross-section of the X space, which woulé bé
obtained for kq=const., mFi,j; eq. (31) gives the
curve k;(k;) €Or comstant g ...q _,. For the
numerical determination of goundaries in cross-
sections of the X space the implicit form (30) is
more useful. It gives --values as a parameter
along the boundary. Constant damping spirals in
the z plane are not conic sections. Usually they
are supplemented by a condition |z| <a, a<l. The
resulting regions can be reasonably well approxi-
mated by a family of nonintersecting circles

(v=v )2+u2 ’rz, z = v+ju

o
vo(vo-l) = 0.99¢ (r-1) VS 0.5. (32)

It is shown in Fig. 2. For r=l it is the unit
circle,with decreasing r the center v_ of the
circles moves to the right until it reaches 0.45
for r=0.3, it then goes back to zero, where vo-r-o
is the deadbeat solution.

Regions in * spice. Equations (22) and (25) show
that the mapped boundaries in Y space represent the
conditions under which the number of eigenvalues
inside and outside a \-regicn can changa. These ¥-
boundaries partition the ¥

" space into reglons; each
of them corresponds to a fixed number Of eigen-
values isside the \ region, and it must be decided,
for which * region all eigenvalues are inside the \
region. For closed contours in the ' -plane the V¥
region is bounded, since by eq. (l6) no ki can go
to infinity. 1f there are several bounded regioans,
a simple test is to check the eigenvaiues for an
arbitrary ' in the consicdered ¥ region. An alter-
aative are Siljak's "shading rules" for the
boundariec {1].

Consider a second order system and a circular V-
region. Boundaries in the kj-kj-plane are three
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Fig. 2.

straight lines obtained for the two real root cases
Yoz and N and one complex root case. They par-
tition the ¥ plane into seven regions with the pro-
perties: no pole outside the circle, one left, two
left,one right, two riznt, one left and one rignt,
complex outside. The only bounded region is the
triangle, chus for Kj,kp in the triangle, \) and \,
are inside the circle. At the vertices of the tri-
angle both poles cross boundaries simultaneously.
This is the case for l) a double pole at 7,, 2) a
double pole at -,, and 1) one pole at = and one at
Thus the total mapping procedure consists of
just three pole placements, i.a. twelve multiplica-
tions and twelve additions. This makes it easy to
map the family of civcles of Fig. 2. If the circle
is deformed to a different closed contour with the
same real avis intersections at Ty and 7,, then the
three vertices and two adges of the triangle remain
unchanged, the third edge, i.e. the complex root
boundary, is replaced by a curve. For a third
order systew and a circular ) -region the two real
riot boundaries are planes. The complex root
boundary for a fixed real pole ia a straight line.
3y moving the real pole the straight line moves and
forms the third surface. The 4 vertices of the
region are again obtained by pole placement of the
four characteristic polynomials with zeros in the
set 'T|,7,:. For the corresponding region in 2
space, Fam and Meditch (4] have shown that the
convex hull of the region is the tetrahedron with
the above mentioned vertices. 3y the linearity of
the marping aquation k'=p'E this property does hold
in the ¥ space also. 3Similarly for arbitrary a
from (4] follows: The convex hull of the ¥ region,
£or which all eigenvalues are located inside a
circle with ceater on the rerl axis and inter-
secting the real axis at 7y,~,, is a polyhedron
with avl verctices. They can Be obtained by pole
placement for the nvl characteristic polynomials
with zeros in the set {z},7,'. 7The two real rooc
typerplanes are two of the surfaces of the poly-
hedron.

32 DESICY IN v

A family of circular boundaries in z plane.
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Robustnnss «with fasrnct to sensor fiilures. A
specification i3 "F,-robust” if it remains satise-
fied after a fatlure >f semsor i, it is “Fyq®
robust™ if the same holds after

failures of both
sensors L and j. Fig. J shows an example of

NoqnnolacundOvy

Eme«qe/ncy Bouncory

Ky

o aary

Fig. 3. Illustration of failure robustness and

emergency boundaries.

boundaries in the ky-k,-subspace. It is assumed,

that all other feedback gains are fixed. The pro-

jection of point 1 on the kl axis is outside the

energency region, i.e. the emergency specification

is not Fp-robust, it is however F, robust. Points 2

and 3 are Fy and F, ctobust. No point is Fy, robust

since the origin k;*k,=0 lies outside the emergency

region. Point 3 alsa'meecs the nominal specifica-

tion and is a good candidate for a robust control

system. Since the nominal boundary intersects the

ko axis, an alternative to the robust solution 3 is

to eliminate the %, sensor and to multiplex the x,

sensor. This would maintain the nominal specifica-

tions under a failure ofone of the x, sensors.

However it requires failure detection with at least

three x. sensors and very likely is the more expen-

sive solution.

Robustness with respect to actuatsc failures.

Assume k; and ko in Fiz. 3 are elements of different

rows of the feedback matrix £' in eq. (A.8). Then

the same arguments as above apply for the robust-

ness of specifications with respect to actuator

failures.

Robustness with respect o larfe paraimatac varia-

tions. Assume that for different operating condi-

tions different paicrs (Ay,By), (A;,83) etc. are :

given. One boundary in the cigenvalue plane now

maps into different boundaries in ¥ space, and it

must be tested, whether thera exists an intersec= {

tion of the admissible regions. [f it does not

exist, then at least a gain scheduling system can

be designed, in which cach gain covers as many oper-

ating conditions as possible.

Robustness with respect to finite wordlencth. The

feedback control law may he implemented approxis

mately in a short wordlength microprocessor as

utty = (K'#E') (+ig) =} -4 (33)

For small x the dominant taem in lu is K'iz, f.e. ‘

the gains should be not too high. For large x the

dominant term is '¥'v. The maximally Li' rodbust

solution is the center of the largest hypercube

with edges parallel o the axes in the admissible

V-region. Fig. % illustrates \L' robustness.

Actuator constraints. Constraints oa ﬁ'ﬂaxlu(t)!

and UTmax|u(t)| can be treated in ¥ space. For the

regulator problem' |
lucerl =ik'seo)l < " xce) %) 1

with equality $5vr the worst case of x(v) (e.g.,

“=ck for some c#)). Assuming that all state vari-

ables have been normailzed to their maximum value,
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¥ orm ' 3
the n . e R (35
f.e., the distance from the >rigin in X space can
be used as a measure for G=maxju(t)|. Similarly

’ B | - " el

lace)l =ikl =l @bk (o)

and 'k'(A-bk')' can be used as a measure.
4. EXAMPLES

The following three examples of second, third, and
fourth order show various typical desizn aspects
and solutions in ¥ space using the tools intro-
duced {n this papar. All calculations were done on
a programmable pocket calculator.

Second order discrete svsten.

£ (k+1) =3 x(kK)*+pu(k), «-[,“ :] g-[‘;;f] (36)

Find u=-{¥; A«]\ such that

1) stabil ir.y is Fy-robust and, if possible, also
F-robuset,

ii) the system remains stable for u=4k1‘ K, ¥ Kot +ak] %
with the maximum _k.

{5 6
k'=p'E={p, p, 1l [6 “ (a7
4 <8

The vertices of the stability triangle in the
k1~k, plane are determined by 3 pole placements

l. P(z )'(“’1)"""’""1 L] ! 6]

2. [E(g)= (2bl)(a-1) 22-1, k'=[-1 -14] (38)
3. 2(2) = (z-1)F mada2zel, k' =(-3 -i0).

In Fig. % it is seen that the requlrements for Fy
and Fy robus:ness are not compactible, the Fy robust
r;bxon 1s chos ii) requires to place the
iargest square wich sides parallel to the axes into
the 7y cobust reqi)n. it has the center
h'=(-0.454545 -10.727272] and permits 2k=1.454545,
This k' places the eL;envaluLs ac 2;=0.132,

.."‘) 636.

N

‘2
‘//j;///
l w1
3 /- : b
/ /  Fa Robust
-5k /
/,.«..-_.-
‘.
{ a =~ F1 Sobus!
N v
.
\e-¥" T~ Maoximaliy Ak-Rotust
v

Fig. 4. Second ovder svstem: A circle maps into a
triangle. Firite wordlength robustness.

DC servo motor. State variables in sensor coordi-

nates are x=|x v i]' with »=shaft angle, v =

angular velocity, L ®=armature current, input: volt-

voltage u. Assumptions: a) load torque Mp =cuw,

b) all state variables normalized to their maximal

values, ¢) simple numerical values

o 1 g o
£=10 -c 13410 )u c>0 39)
lo -1 1" 1

d) scace feedback u= k, (r-xl) kntq-kq <y, (40)
which gives a zero sc;:xon;r; ecror lx Ar-cl(tH
for a step ro’crcncc inpuc r, provi f 4 the system
ts stable. Find k'={%, k3 %3] such that

i) stabilicy is Fay robusc Dor all loads o

i) For a loud ¢ 1 complex pair >f eigeavalues

with damping 1/-2 or more is required:
Zoundaries A and B in the s-plane of Fig. §S.
This specification shall be Fp, Fy, and Fag
robusct.
iii) A tradeoff with the magnitude of 3=maxAuI and
the maximum bandwidth is to be male.
The observability analysis shows, that 7 cannot be
observed by 1 or i, thus the 5 sensor is essential,
i.e. the reliability with respect to a failure of
the ¥ sensor can be increased only by redundant ¥
sensors. The gain k} will be determined firsc. Foq™
robustness of stability requires that P(s) =
s9+(l4c)s2 +(l#c)sHey, €0, is Hurwitz, i.e.
O<k;< (14c)?. The worst case is c-o. rfor maxi-
mum bandwidth choose kp=l.

! 0 0
Al l
K'ep'Elp, py Py 1l [g L : ey

0 -1+?  -l-c
Lea. kl-po-l ko= pl-cp,-l*cz, kj-pﬁ‘l-c. By eq.
(25) P(s)= 53 _:sr-ﬂfy(qﬁ)-qf--+u)+(~-+' 2.2-q)s
+(q=23)s+s -q(’-+x )=l guarantees ¢>0, l.e.
the real Slgcnvaiue ig stable. For c¢=2 and boundary
A, L.e. wfnze, PJ'Zq“ P1=27(c-q), P2=q-27 and by
eq. (41) kl'" “'l ~«-"( +2)=2q(142)43, t;'q i>e),
3y ky=p,=l, q=1/23~, the product of eigegvalues is
fixed and kq‘Z*f’*’) (l*ﬂ\/‘**) k =1/2:%<2c-),
This i{s curve A in Fig. 5. A Bode plot shous

%3

F2,Fy cna F33
= : Pooust Fegion

Max Bandwigth

Fig. 5. Tradeoffs between tachometer (k.) and
ampevareters (ky) feedback for a dc motor.

that the maximum bandwidth is obtained 1{f real and
complex poles have the same distance from the
origin, i.e. q=l, ==-1/A 2, see Fig. S. The minimum
7 is obtained at the point of curve A, which is
closest to the origin.

For bounda y B P(s)= (s-') (>+q)'q:'+’('-“q)s+
(q-")§~+s » and as before ko=7(c +u)-‘(1+')/"+3.

ky=1/c®-2--3, Points in the shaded ragion

satisfy specifications ii). The point of maximum
bandwidth on the A curve is not_in the robust
region, therefore damping > 1A 2 is necessary. If
q=1l is kept constant and the complex poles move
along the unit circle, then k moves along a
straight line in the ka-kj-plane. Two points of
this line are ka=k3=0 for a triple pole at s=-1 and
the point ==-177 on curve A. Thus 1 good first
choice would be the point k:'O.J. k;--O.J indicated
Sy the triangle in Fig. 5.
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Crane., Consider a crane with the physical para-
meters m.=crab mass, mL=lom! mass, 4=rope length.
Its state variables are x =crab position, Kp=crab
velocity, XyTrope angle and x,=rope angular
velocity. Ftor small rope angles the linearized
state equations are

o 1 0 01 0
..lo 0 mg/m. O 1 1
va L8/ —_— 4
Blo o "o 1|f*ai| o} 523
0 0 < 0 -1/2

with uz'(mc+mL)g/m:L. Let g=10m/sac? for opera-

tion on earth. Input u is the force accelerating

the crab. Eigeavalues are (0,0,ju,-jwl. The
observability analysis snhows that x; is not obser-
vable by X3, %3 or x,, thus the crab position

sensor is esseantial.’ 1t was shown in [5] that x,

must be measured or estimated, without xz-feedbaEk

a stabilization is impossible.

Given: m.=1000kg, 2=10m, maximum load 3000 kg,

design a sampled-data controller

u(kT) = -k'x (kT) (43)
for the following specifications:

i) Consider a typical movement: Pick up a load
act rest and drop it 10m away at rest again,
i.e. initial state x={10 0 0 0]', final state
x#). During this movement the required force
should not exceed 5000 Yewton.

ii) The amplitude of the load oscillacion after
10 seconds should be small for two typical
loads my of 3000 kg and 1000 k3.

iii) It is desirable to avoid the measurement of
the rope angular velocity x, .

The sampoling interval T was selected such that in

the worst case m;=3000 kg the complex poles in z-

plane lie on a 459 angle with respect to the posiz

tive real axis. This results in T=r/8.

The discretization and evaluation of the E matrix

were done in center of rmass coordinates, in which

the system is block diagonalized. The result,
transformed back to sensor coordinates x, is then

E=(g) ag4E,] a=m 2/ (m +m) (44)
1 -31/2
(m. ) (2 sinwT-sin 2uT) Lo ==/
E:® T ‘—LL = 1 T/2
=1 (S sinwT-4 sia2uT+sin uT) 1 3T/2
L 57/2
- -.\"l 1
&3 ZslnLT/’(Ssxnnr-us-n-¢r+sxn3‘;) -IXZZBXQI

Gapst lcos(x =1/2)uT-2cos (i-3/2)uT+cos (1=5/2)uT)
=i | wlsin(i-1/2)aT-2sin(i-3/2)vT+sin(i=5/2)wT]
L0, 123
tote that this form E=E(my,m.,Z,T) could also be
used to implament a zain schecduled control law
&'=2'E=k' (my,m.,4,T), wnich keeps the eigenvalues
constant.
In the filrsc design step o first guess for k' is
determined for mp=3000kg only. First a partial
*olc plac;mgn: is made by eq. (l4), which gives a
1/.2 nmpxng to the p;ndulun motion without
changing its natural frequency, i.a. 1 pole pair
at z) »=0. -8 76xj0.3025. For the initial condition
<(0)= (’.o 0 0 0]' the firsc control input is
u(?)=10%,, thus L3} g300(xcucon/m) is necessary t2
meet specification i). Tor a fast respense ;=500
is chosen. After specifying two aigenvalues and
one feedback gain there remains one free parameter,
which is conveniently exhibited is 1 parameter on
the root locus for the reraining two poles. its
complex part is a circle around :=1 with radius
O.IZ§6, the intersection of this circle with the
1/.2 damping spiral at r3‘%=0.3637_j0.1177 is
chosen. This results in <'=(500 1227 7867 -738].

the simulation shows that u(kT) does not svceed
3000 leweton. For the nominal load of 3000 kg tihe
maximal amplitude after 10 seconds is 4.3% of the
initial displacement. This first solution is how-
ever unsatisfactory for m, =1000 kg, with a maximal
amplitude of 12.37 after EO sccondb.
In the second design step primarily the solution
for m;=1000 kg must be speceded up. From the first
solution only the values k=500 and k,=1927 are
kept and ky and ¥, are the free parameters of the
second step. he four eigenvalues move with k, and
%, they shall be kept however in the circle r=0.5
in Fig. 2. The circle maps into the 3000 kg
boundary in the k3-k, plane shown in Fig. 6.

Xa

(e 1000“9 T

—\m

[y, R———

Ky

Fig. 6. A crane: Robustness with respect to large
load variations.

At point A there are two different complex con-
jugate cigenvalue pairs crossing the circle simul-
taneously, such that the complex root boundary
intersects itself. The right real boundary is out-
side the figure. At point B the complex and the
left real root boundary for z,=-0.05 meet, i.e.
this kj,k, pair generates a double pole at z=-0.0S.
In points C and D a complex pair and a real root at
2=-0.05 cross the boundary simultaneously. The
1000 kg boundary has a similar shape, only its
right part and the intersection D', corresponding
to D, are shown. Thus the first design point indi-
cated by the triangle must be moved to the left;
let k3=4000. Since k4 is small anyway, k,=0 is
chosen in view of specification iii). S$imulation
shows that the maximum amplitudes after 10 seconds
are 6.47 for 3000kz and 3% for 1000 kg . The angle
X, remains small, such that this assumption for the
linearization of the plant equation is sacisfied.
If necessary a third design step could follow in
which ;=500 and k,=0 are fixed and k, and kj are
varied.

S. CONCLUSTIONS

Classical parameter plane ideas have been combined
with pole placement results to a design method in
¥ space. The crucial step is the introduction of a
plant representation in the form of the matrix E ia
aqs. (16) and (A.5). The linear mapping Iroem &
space to ¥ space is performed by a multiplication
with the matrix E and is thus reduced to a computa-
tionally very simple step. In ¥ space typical
design aspects such as actuator limitations and
robustness with respect to seansor and actuator
failures, large parameter variations and short
wordlength implementation have elementary geometric
iaterpretations, and saveral questions of practical
interest can be treated in a clear and simple way
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as is illustrated by three examples.

The examples are resctricted so far to tradeoffs in
two free parameters it a time, where a graphical
interpretation in cross-sections of the * space is
possible. This is already a practically applic-
able tool with apparent advantages over graphical
one-parameter methods like root locus. For example
in successively closing loops >f a cascaded system
it allows to make tradeoffs between two successive
steps.

The concept of the method is however not limited
in the number of parameters. Due %o the computa-
tional simplicity of the mapping it seems feasible
to develop computar-aided design methods with
displays visualizing three-dimensional surfaces
and regloas by moving point of view or moving
cross-section. If the computer has to make the
tradeoffs in problems with rauw parameters, diffi-
culties arise, if there dves not exist a point in
Y space satisfying all specifications. In this
situation the conceprt of a moving boundary may be
useful, which was used by Zakian and Al-Naib (6]
ia the numerical treatment of inequalitiecs. In
figs. 1 and 2 this means that the parameter 3 or r
is varied continuously until a solution is found.
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APPEIDIX

to the

The generalization of eq. (16), k'=p'E,
] and is

multivariable case was published in |
quoted here £9r ecasier reference:
Given a controllable pair (4,3), let 3=(b; ... b,]
and Tt . )
i =rankiB,AB .. B ‘B,Akbl B [ R

3 i e s (A.L)

E
5

a
Fok Tpk-1°
A controllability index sqy £=21,2..p of the pair
(A,B) is the smallest integer k such that ry,=

-3
{1k Then A b. is linearly dapendent sn the
=h e S et 2 b 9 ¢ :
vectors left of it in the coatrollabdility matrix
and can be exprass2d as

Atpe-l3az...at

g S -1, 5 “
L G PRRY Ga FERY PR € W)

Note that by Popov's theorem on feedback invariants
{721, % 1s iavariant under 1 transformation

i 2ixn g

(2,3) =(ZQ-BK)T'T ), det TFO. Let

sl | A
R=(b ... gl,‘%_,...,..ip gp], 5{1-1 (A.%)
%
and o/ the last row of the . «n macrix Q- Let
[ el
Ey =
E=|: " '-}i'-‘- (A.S5)
& S
L '
oy

Introduce nxp characteristic parameters in a pxp
matrix
L '
s Tt = Bip

(A.6)

> 1 1

La?l L EPP

with piy=(Pys0 Pygy o Py -1 1

0] i#j

L
- o 2k % S e
pz) IPLJO pLJl ; *Lgsj-l
2' generalizes p', the vector of coefficients of the
characteristic polynomial, its coefficients o, .
are the coordinates of an axp dimensicnal paril

meter space 2. P' is related to the characteristic
polynomial by

P() =det(I-a+BK')=declp'-diag(i;)],

PRI S s A.7)
and to the state feedback matrix by
iy o!
K'=M PE. (A.8)

Thus the system representation (E.HAB) may be
considered as a mapping between two nxp dimen-
sional parameter spaces ¥ and X¥. Note that the n
coeificients of any tow of P' enter limearly into
the determinant in eq. (A.7), thus they can be
expressed by the coefficients of P(1) and by the
remaining nx (p-l) characteristic parameters in g‘,
which parameterize the remaining degrees of free-
dom after pole placement. If the coefficients of
the first row of P' are eliminated in this way,
eq. (A.3) results in n-p equations relating the
feedback gains to the n(p-l) free parameters.

Due to the structure of Myg, n(p-1) of these
equations are linear, only the equations for the
elements of the first row of K are nonlinear in
the free paramets<rs.

The free parameters can now be chosen according to
additional requirements, ¢.3. minimizing the
maximal feedback gain in view of actuator limita-
tions or to make certain columns of X' equal to
zero in order to save sensors.
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